查找算法:顺序查找和二分查找的区别,哪个更快?
文章介绍了两种基础查找算法:顺序查找和二分查找,用于解决从数据中定位特定元素的问题。 顺序查找(线性查找)原理是逐个比较元素,无需数据有序,时间复杂度O(n)(n为数据量),优点是简单,缺点是效率低,适合小数据量或无序数据。 二分查找(折半查找)要求数据有序,通过分半比较缩小范围,时间复杂度O(log n),效率高(如n=1000时仅需约10次),但需处理边界条件,适合大数据量有序数据。 两者对比:顺序查找无需有序、实现简单但效率低;二分查找需有序且复杂度高但速度快。选择依据为数据规模和有序性:有序大数据用二分,无序小数据用顺序。
阅读全文使用Java实现归并排序算法
归并排序是基于分治思想的高效排序算法,核心为分解、解决、合并三步:先将数组递归分解为单元素子数组,再递归排序子数组,最后合并两个有序子数组为整体有序数组。 Java实现中,`mergeSort`方法通过递归分解数组为左右两半,分别排序后调用`merge`合并。`merge`方法使用三个指针遍历左右子数组,比较元素大小并填充结果数组,剩余元素直接复制。 算法复杂度:时间复杂度O(n log n)(每次合并O(n),递归深度log n),空间复杂度O(n)(需额外数组存储合并结果),且为稳定排序(相等元素相对顺序不变)。 归并排序逻辑清晰,适合大数据量排序,是分治算法的经典案例,通过递归分解与合并有序子数组实现高效排序。
阅读全文排序算法的‘双维度’:时间复杂度与空间复杂度入门
排序算法的双维度复杂度(时间与空间)是选择算法的核心依据。时间复杂度上,小数据量(n≤1000)可用冒泡、选择、插入排序(O(n²)),大数据量(n>10000)则选快速、归并、堆排序(O(n log n))。空间复杂度中,堆排序、冒泡等为O(1)(原地排序),快速排序O(log n),归并排序O(n)。两者需权衡:如归并排序以O(n)空间换稳定的O(n log n)时间,快速排序用O(log n)空间平衡效率。初学者应先掌握简单算法,再深入高效算法,依数据规模和空间限制选择,实现“按需排序”。
阅读全文排序算法的‘速度密码’:时间复杂度与冒泡排序
这篇文章围绕排序算法的“速度密码”展开,核心是时间复杂度与冒泡排序。时间复杂度用大O表示法衡量,常见类型有O(n)(线性,随数据量线性增长)、O(n²)(平方,数据量大时效率极低)、O(log n)(对数,速度极快),其是判断算法快慢的关键。 冒泡排序作为基础算法,原理是通过相邻元素比较交换,将小元素“上浮”、大元素“下沉”。以数组[5,3,8,4,2]为例,重复遍历比较相邻元素,直至完成排序。其时间复杂度为O(n²),空间复杂度O(1)(原地排序),优点是简单易懂、逻辑直观,缺点是效率低,数据量大时耗时极久。 总结:冒泡排序虽慢(O(n²)),但作为入门工具,能帮助理解排序思想与时间复杂度,为学习快速排序等高效算法(优化至O(n log n))奠定基础。
阅读全文二分查找:比线性查找快多少?数据结构中的查找技巧
文章介绍了计算机中的查找算法,从线性查找和二分查找两方面展开。线性查找(顺序查找)是基础方法,通过从头到尾逐个检查数据,时间复杂度为O(n),适用于数据量小或无序的场景,最坏情况需遍历全部数据。二分查找则需在有序数组中使用,核心是每次排除一半数据,时间复杂度O(log n),数据量大时效率远超线性查找(如n=100万,二分仅需20次,线性需100万次)。两者适用场景不同:二分适用于有序、大数据量且频繁查找的场景;线性适用于无序、小数据量或动态变化的数据。总结:二分查找通过“对半排除”大幅提升效率,是大数据量有序数据的高效选择,而线性查找在小数据量或无序场景更灵活。
阅读全文