快速入门Pytorch:张量维度变换与常用操作

这篇文章介绍了Pytorch张量的核心知识,包括基础、维度变换、常用操作及练习建议。张量是Pytorch存储数据的基本结构,类似NumPy数组,支持GPU加速和自动求导。创建方式有:从列表/数值用`torch.tensor()`,从NumPy数组用`torch.from_numpy()`,或用内置函数生成全0/1/随机张量。 维度变换是关键操作:`reshape()`灵活调整形状(元素总数不变),`squeeze()`去掉单维度,`unsqueeze()`增加单维度,`transpose()`和`permute()`交换维度。常用操作包括基础算术运算、矩阵乘法`matmul()`、广播机制(自动扩展维度运算)及聚合操作(`sum()`/`mean()`/`max()`等)。 文章建议通过练习巩固张量操作,如维度调整、广播机制和维度交换,以掌握“形状语言”,为后续模型构建奠定基础。

阅读全文
Pytorch入门到实践:用简单例子理解模型构建

这篇Pytorch入门教程涵盖核心知识点:Pytorch基于Python,动态计算图优势明显,安装简单(`pip install torch`)。核心数据结构是张量(Tensor),支持GPU加速,可创建、操作(加减乘除、矩阵乘法)及与NumPy互转。自动求导(autograd)通过`requires_grad=True`实现梯度计算,如`y=x²+3x`在x=2时导数为7。线性回归模型继承`nn.Module`定义,前向传播实现`y=wx+b`。数据准备生成模拟数据(`y=2x+3+噪声`),通过`TensorDataset`和`DataLoader`批量加载。训练用MSE损失与SGD优化器,循环中梯度清零、反向传播、参数更新,1000轮后验证并可视化结果,学习到参数接近真实值。核心流程涵盖张量操作、自动求导、模型构建、数据加载及训练优化,可扩展至复杂模型。

阅读全文