轻松搞定!Python OpenCV边缘检测基础教程

这篇文章介绍了图像边缘检测的概念、Python OpenCV实现及核心算法。边缘检测用于识别图像中像素强度显著变化的区域(如物体轮廓),是计算机视觉基础,广泛应用于人脸识别、自动驾驶等领域。 环境准备需安装Python和OpenCV(`pip install opencv-python`)。核心流程分三步:图像预处理(灰度化、降噪)、边缘检测算法、结果可视化。 重点讲解Canny边缘检测(John Canny 1986年提出),步骤为:1.灰度化(减少计算量);2.高斯模糊(降噪,核大小5×5常见);3.计算梯度(Sobel算子);4.非极大值抑制(细化边缘);5.双阈值筛选(低阈值50-150、高阈值150-200,阈值影响边缘敏感度)。Python代码示例:读取图像→灰度化→模糊→Canny检测→显示结果。 其他算法包括Sobel(梯度计算)和Laplacian(二阶导数),需先模糊降噪。实践技巧:优先模糊、调整阈值;常见问题:图像读取失败(检查路径

阅读全文