初步了解TensorFlow
这篇笔记非常详细地介绍了使用TensorFlow训练一个3层神经网络来进行手写数字识别的过程。以下是笔记的主要内容和关键点: 1. **数据集准备**: - 使用了`load_dataset()`函数加载MNIST数据集。 - 将数据集中的图像重新调整为28x28大小,并对标签进行one-hot编码。 2. **创建占位符**: - 定义输入和输出的维度,创建了用于存储特征和
阅读全文使用Logistic回归实现猫的二分类
你提供的代码是一个完整的从零开始实现逻辑回归模型的过程,并且还包含了一些附加功能来测试不同的学习率和预测自己的图像。以下是你已经实现的功能简要说明: 1. **数据准备**: - 读取并预处理MNIST手写数字识别数据集。 - 将每张图片从2D的(64, 64)转换为一维向量。 2. **模型构建与训练**: - 实现了逻辑回归的一些关键函数,如初始化参数、前向传播、后向传播
阅读全文《Neural Networks and Deep Learning》的理论知识点
这个笔记涵盖了吴恩达教授在deeplearning.ai系列课程中的一些关键概念和公式。下面是对这些内容进行分类整理和补充说明: ### 1. 神经网络基础 #### 1.1 单层神经网络 - **tanh激活函数**:接近0的输入,其梯度接近于最大(1)。远离0时,梯度接近于零。 - **初始化权重**:使用 `W = np.random.randn(layer_size_prev, lay
阅读全文